Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(35): e202300476, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-36920943

RESUMO

SARS-CoV-2 is still wreaking havoc all over the world with surging morbidity and high mortality. The main protease (Mpro ) is essential in the replication of SARS-CoV-2, enabling itself an active target for antiviral development. Herein, we reported the design and synthesis of a new class of peptidomimetics-constrained α, γ-AA peptides, based on which a series of aldehyde and ketoamide inhibitors of the Mpro of SARS-CoV-2 were prepared. The lead compounds showed excellent inhibitory activity in the FRET-based Mpro enzymatic assay not only for the Mpro of SARS-CoV-2 but also for SARS-CoV and MERS-CoV, along with HCoVs like HCoV-OC43, HCoV-229E, HCoV-NL63 and HKU1. The X-ray crystallographic results demonstrated that our compounds form a covalent bond with the catalytic Cys145. They also demonstrated effective antiviral activity against live SARS-CoV-2. Overall, the results suggest that α, γ-AA peptide could be a promising molecular scaffold in designing novel Mpro inhibitors of SARS-CoV-2 and other coronaviruses.


Assuntos
COVID-19 , Coronavirus Humano OC43 , Humanos , SARS-CoV-2 , Peptídeos/farmacologia , Antivirais/farmacologia , Inibidores de Proteases/química
3.
J Med Chem ; 65(4): 2848-2865, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33891389

RESUMO

The main protease (Mpro) of SARS-CoV-2 is a validated antiviral drug target. Several Mpro inhibitors have been reported with potent enzymatic inhibition and cellular antiviral activity, including GC376, boceprevir, calpain inhibitors II, and XII, with each containing a reactive warhead that covalently modifies the catalytic Cys145. Coupling structure-based drug design with the one-pot Ugi four-component reaction, we discovered one of the most potent noncovalent inhibitors, 23R (Jun8-76-3A) that is structurally distinct from the canonical Mpro inhibitor GC376. Significantly, 23R is highly selective compared with covalent inhibitors such as GC376, especially toward host proteases. The cocrystal structure of SARS-CoV-2 Mpro with 23R revealed a previously unexplored binding site located in between the S2 and S4 pockets. Overall, this study discovered 23R, one of the most potent and selective noncovalent SARS-CoV-2 Mpro inhibitors reported to date, and a novel binding pocket in Mpro that can be explored for inhibitor design.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Desenho de Fármacos , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/síntese química , Antivirais/química , COVID-19/metabolismo , Chlorocebus aethiops , Proteases 3C de Coronavírus/isolamento & purificação , Proteases 3C de Coronavírus/metabolismo , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Prolina/análogos & derivados , Prolina/síntese química , Prolina/química , Prolina/farmacologia , Pirrolidinas/síntese química , Pirrolidinas/química , Pirrolidinas/farmacologia , SARS-CoV-2/enzimologia , Ácidos Sulfônicos/síntese química , Ácidos Sulfônicos/química , Ácidos Sulfônicos/farmacologia , Células Vero , Tratamento Farmacológico da COVID-19
4.
J Am Chem Soc ; 143(49): 20697-20709, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34860011

RESUMO

The main protease (Mpro) is a validated antiviral drug target of SARS-CoV-2. A number of Mpro inhibitors have now advanced to animal model study and human clinical trials. However, one issue yet to be addressed is the target selectivity over host proteases such as cathepsin L. In this study we describe the rational design of covalent SARS-CoV-2 Mpro inhibitors with novel cysteine reactive warheads including dichloroacetamide, dibromoacetamide, tribromoacetamide, 2-bromo-2,2-dichloroacetamide, and 2-chloro-2,2-dibromoacetamide. The promising lead candidates Jun9-62-2R (dichloroacetamide) and Jun9-88-6R (tribromoacetamide) had not only potent enzymatic inhibition and antiviral activity but also significantly improved target specificity over caplain and cathepsins. Compared to GC-376, these new compounds did not inhibit the host cysteine proteases including calpain I, cathepsin B, cathepsin K, cathepsin L, and caspase-3. To the best of our knowledge, they are among the most selective covalent Mpro inhibitors reported thus far. The cocrystal structures of SARS-CoV-2 Mpro with Jun9-62-2R and Jun9-57-3R reaffirmed our design hypothesis, showing that both compounds form a covalent adduct with the catalytic C145. Overall, these novel compounds represent valuable chemical probes for target validation and drug candidates for further development as SARS-CoV-2 antivirals.


Assuntos
Acetamidas/farmacologia , Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/química , Catepsina L/antagonistas & inibidores , Desenho de Fármacos , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade , Especificidade por Substrato
5.
ACS Cent Sci ; 7(7): 1245-1260, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34341772

RESUMO

The papain-like protease (PLpro) of SARS-CoV-2 is a validated antiviral drug target. Through a fluorescence resonance energy transfer-based high-throughput screening and subsequent lead optimization, we identified several PLpro inhibitors including Jun9-72-2 and Jun9-75-4 with improved enzymatic inhibition and antiviral activity compared to GRL0617, which was reported as a SARS-CoV PLpro inhibitor. Significantly, we developed a cell-based FlipGFP assay that can be applied to predict the cellular antiviral activity of PLpro inhibitors in the BSL-2 setting. X-ray crystal structure of PLpro in complex with GRL0617 showed that binding of GRL0617 to SARS-CoV-2 induced a conformational change in the BL2 loop to a more closed conformation. Molecular dynamics simulations showed that Jun9-72-2 and Jun9-75-4 engaged in more extensive interactions than GRL0617. Overall, the PLpro inhibitors identified in this study represent promising candidates for further development as SARS-CoV-2 antivirals, and the FlipGFP-PLpro assay is a suitable surrogate for screening PLpro inhibitors in the BSL-2 setting.

6.
bioRxiv ; 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33758866

RESUMO

The papain-like protease (PL pro ) of SARS-CoV-2 is a validated antiviral drug target. PL pro is involved in the cleavage of viral polyproteins and antagonizing host innate immune response through its deubiquitinating and deISG15ylating activities, rendering it a high profile antiviral drug target. Through a FRET-based high-throughput screening, several hits were identified as PL pro inhibitors with IC 50 values at the single-digit micromolar range. Subsequent lead optimization led to potent inhibitors with IC 50 values ranging from 0.56 to 0.90 µM. To help prioritize lead compounds for the cellular antiviral assay against SARS-CoV-2, we developed the cell-based FlipGFP assay that is suitable for quantifying the intracellular enzymatic inhibition potency of PL pro inhibitors in the BSL-2 setting. Two compounds selected from the FlipGFP-PL pro assay, Jun9-53-2 and Jun9-72-2, inhibited SARS-CoV-2 replication in Caco-2 hACE2 cells with EC 50 values of 8.89 and 8.32 µM, respectively, which were 3-fold more potent than GRL0617 (EC 50 = 25.1 µM). The X-ray crystal structures of PL pro in complex with GRL0617 showed that binding of GRL0617 to SARS-CoV-2 induced a conformational change in the BL2 loop to the more closed conformation. Overall, the PL pro inhibitors identified in this study represent promising starting points for further development as SARS-CoV-2 antivirals, and FlipGFP-PL pro assay might be a suitable surrogate for screening PL pro inhibitors in the BSL-2 setting.

7.
Sci Adv ; 6(50)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33158912

RESUMO

The main protease (Mpro) of SARS-CoV-2 is a key antiviral drug target. While most Mpro inhibitors have a γ-lactam glutamine surrogate at the P1 position, we recently found that several Mpro inhibitors have hydrophobic moieties at the P1 site, including calpain inhibitors II and XII, which are also active against human cathepsin L, a host protease that is important for viral entry. In this study, we solved x-ray crystal structures of Mpro in complex with calpain inhibitors II and XII and three analogs of GC-376 The structure of Mpro with calpain inhibitor II confirmed that the S1 pocket can accommodate a hydrophobic methionine side chain, challenging the idea that a hydrophilic residue is necessary at this position. The structure of calpain inhibitor XII revealed an unexpected, inverted binding pose. Together, the biochemical, computational, structural, and cellular data presented herein provide new directions for the development of dual inhibitors as SARS-CoV-2 antivirals.


Assuntos
Catepsina L/química , Proteases 3C de Coronavírus/química , Desenho de Fármacos , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Animais , Células CACO-2 , Catepsina L/antagonistas & inibidores , Catepsina L/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Cristalografia por Raios X , Cães , Humanos , Cinética , Células Madin Darby de Rim Canino , Modelos Químicos , Estrutura Molecular , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Domínios Proteicos , Células Vero
8.
bioRxiv ; 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32766590

RESUMO

The main protease (Mpro) of SARS-CoV-2, the pathogen responsible for the COVID-19 pandemic, is a key antiviral drug target. While most SARS-CoV-2 Mpro inhibitors have a γ-lactam glutamine surrogate at the P1 position, we recently discovered several Mpro inhibitors have hydrophobic moieties at the P1 site, including calpain inhibitors II/XII, which are also active against human cathepsin L, a host-protease that is important for viral entry. To determine the binding mode of these calpain inhibitors and establish a structure-activity relationship, we solved X-ray crystal structures of Mpro in complex with calpain inhibitors II and XII, and three analogues of GC-376, one of the most potent Mpro inhibitors in vitro. The structure of Mpro with calpain inhibitor II confirmed the S1 pocket of Mpro can accommodate a hydrophobic methionine side chain, challenging the idea that a hydrophilic residue is necessary at this position. Interestingly, the structure of calpain inhibitor XII revealed an unexpected, inverted binding pose where the P1' pyridine inserts in the S1 pocket and the P1 norvaline is positioned in the S1' pocket. The overall conformation is semi-helical, wrapping around the catalytic core, in contrast to the extended conformation of other peptidomimetic inhibitors. Additionally, the structures of three GC-376 analogues UAWJ246, UAWJ247, and UAWJ248 provide insight to the sidechain preference of the S1', S2, S3 and S4 pockets, and the superior cell-based activity of the aldehyde warhead compared with the α-ketoamide. Taken together, the biochemical, computational, structural, and cellular data presented herein provide new directions for the development of Mpro inhibitors as SARS-CoV-2 antivirals.

9.
Cell Res ; 30(8): 678-692, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32541865

RESUMO

A new coronavirus SARS-CoV-2, also called novel coronavirus 2019 (2019-nCoV), started to circulate among humans around December 2019, and it is now widespread as a global pandemic. The disease caused by SARS-CoV-2 virus is called COVID-19, which is highly contagious and has an overall mortality rate of 6.35% as of May 26, 2020. There is no vaccine or antiviral available for SARS-CoV-2. In this study, we report our discovery of inhibitors targeting the SARS-CoV-2 main protease (Mpro). Using the FRET-based enzymatic assay, several inhibitors including boceprevir, GC-376, and calpain inhibitors II, and XII were identified to have potent activity with single-digit to submicromolar IC50 values in the enzymatic assay. The mechanism of action of the hits was further characterized using enzyme kinetic studies, thermal shift binding assays, and native mass spectrometry. Significantly, four compounds (boceprevir, GC-376, calpain inhibitors II and XII) inhibit SARS-CoV-2 viral replication in cell culture with EC50 values ranging from 0.49 to 3.37 µM. Notably, boceprevir, calpain inhibitors II and XII represent novel chemotypes that are distinct from known substrate-based peptidomimetic Mpro inhibitors. A complex crystal structure of SARS-CoV-2 Mpro with GC-376, determined at 2.15 Å resolution with three protomers per asymmetric unit, revealed two unique binding configurations, shedding light on the molecular interactions and protein conformational flexibility underlying substrate and inhibitor binding by Mpro. Overall, the compounds identified herein provide promising starting points for the further development of SARS-CoV-2 therapeutics.


Assuntos
Antivirais/farmacologia , Betacoronavirus/enzimologia , Infecções por Coronavirus/metabolismo , Glicoproteínas/farmacologia , Pneumonia Viral/metabolismo , Prolina/análogos & derivados , Pirrolidinas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Células A549 , Animais , Antivirais/química , COVID-19 , Células CACO-2 , Chlorocebus aethiops , Proteases 3C de Coronavírus , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Descoberta de Drogas/métodos , Humanos , Concentração Inibidora 50 , Cinética , Pandemias , Pneumonia Viral/virologia , Prolina/farmacologia , Conformação Proteica , Pirrolidinas/química , SARS-CoV-2 , Ácidos Sulfônicos , Células Vero , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...